Mathematics of the Transcendental

· A&C Black
Livro eletrónico
224
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

In Mathematics of the Transcendental, Alain Badiou painstakingly works through the pertinent aspects of category theory, demonstrating their internal logic and veracity, their derivation and distinction from set theory, and the 'thinking of being'. In doing so he sets out the basic onto-logical requirements of his greater and transcendental logics as articulated in his magnum opus, Logics of Worlds.

Previously unpublished in either French or English, Mathematics of the Transcendental provides Badiou's readers with a much-needed complete elaboration of his understanding and use of category theory. The book is vital to understanding the mathematical and logical basis of his theory of appearing as elaborated in Logics of Worlds and other works and is essential reading for his many followers.

Acerca do autor

Alain Badiou teaches at the École Normale Supérieure and at the Collège International de Philosophie in Paris, France. In addition to several novels, plays and political essays, he has published a number of major philosophical works.

A. J. Bartlett is an Adjunct Research Fellow at the Research Unit in European Philosophy at Monash University, Australia. He is the author of Badiou and Plato: An Education by Truths, and with Justin Clemens and Jon Roffe author of Lacan, Deleuze, Badiou, forthcoming.

Alex Ling is Research Lecturer in Communication and Media Studies at the University of Western Sydney, Australia. He is the author of Badiou and Cinema, and Badiou Reframed, forthcoming.

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.