Mathematische Modelle des Kontinuums

· Springer-Verlag
Електронна книга
166
Сторінки
Google не перевіряє оцінки й відгуки. Докладніше.

Про цю електронну книгу

Das Kontinuum ist seit Aristoteles ein Gegenstand philosophischen Denkens, seit Leibniz auch mathematischer Theorie. Das heute gängige Standardmodell, das reelle Zahlensystem, das der klassischen Analysis und den physikalischen Weltmodellen zugrunde liegt, ist weder das erste noch das letzte Wort der Mathematik zu diesem Thema.

Das vorliegende Buch unternimmt es, in repräsentativer Auswahl Revue passieren zu lassen, was die Mathematik bisher zu ihm hervorgebracht hat, von der Proportionenlehre des Eudoxos bis zum synthetischen Infinitesimalkalkül und den Conwayzahlen; das Standardmodell, in den Grundvorlesungen meist axiomatisch eingeführt, wird dabei aus den mengentheoretischen Axiomen, also vom Ausgangspunkt (fast) aller heutigen Theorie konstruiert.

Gleichzeitig wird versucht, den Gegenstand und seine Entwicklung in philosophische und historische Zusammenhänge zu stellen.

Der Text eignet sich als Grundlage für Vorlesungen und Seminare, aber auch zum Selbststudium für jeden, der eine mathematische Grundausbildung absolviert hat.

Der Verfasser lehrt Zahlentheorie an der Universität Hamburg.

Про автора

Dr. Ernst Kleinert lehrt Zahlentheorie an der Universität Hamburg.

Оцініть цю електронну книгу

Повідомте нас про свої враження.

Як читати

Смартфони та планшети
Установіть додаток Google Play Книги для Android і iPad або iPhone. Він автоматично синхронізується з вашим обліковим записом і дає змогу читати книги в режимах онлайн і офлайн, де б ви не були.
Портативні та настільні комп’ютери
Ви можете слухати аудіокниги, куплені в Google Play, у веб-переглядачі на комп’ютері.
eReader та інші пристрої
Щоб користуватися пристроями для читання електронних книг із технологією E-ink, наприклад Kobo, вам знадобиться завантажити файл і перенести його на відповідний пристрій. Докладні вказівки з перенесення файлів на підтримувані пристрої можна знайти в Довідковому центрі.