Maximum Likelihood Estimation of Functional Relationships

· Lecture Notes in Statistics 69-китеп · Springer Science & Business Media
Электрондук китеп
110
Барактар
Рейтинг жана сын-пикирлер текшерилген жок  Кеңири маалымат

Учкай маалымат

The theory of functional relationships concerns itself with inference from models with a more complex error structure than those existing in regression models. We are familiar with the bivariate linear relationship having measurement errors in both variables and the fact that the standard regression estimator of the slope underestimates the true slope. One complication with inference about parameters in functional relationships, is that many of the standard properties of likelihood theory do not apply, at least not in the form in which they apply to e.g. regression models. This is probably one of the reasons why these models are not adequately discussed in most general books on statistics, despite their wide applicability. In this monograph we will explore the properties of likelihood methods in the context of functional relationship models. Full and conditional likelihood methods are both considered. Possible modifications to these methods are considered when necessary. Apart from exloring the theory itself, emphasis shall be placed upon the derivation of useful estimators and their second moment properties. No attempt is made to be mathematically rigid. Proofs are usually outlined with extensive use of the Landau 0(.) and 0(.) notations. It is hoped that this shall provide more insight than the inevitably lengthy proofs meeting strict standards of mathematical rigour.

Бул электрондук китепти баалаңыз

Оюңуз менен бөлүшүп коюңуз.

Окуу маалыматы

Смартфондор жана планшеттер
Android жана iPad/iPhone үчүн Google Play Китептер колдонмосун орнотуңуз. Ал автоматтык түрдө аккаунтуңуз менен шайкештелип, кайда болбоңуз, онлайнда же оффлайнда окуу мүмкүнчүлүгүн берет.
Ноутбуктар жана компьютерлер
Google Play'ден сатылып алынган аудиокитептерди компьютериңиздин веб браузеринен уга аласыз.
eReaders жана башка түзмөктөр
Kobo eReaders сыяктуу электрондук сыя түзмөктөрүнөн окуу үчүн, файлды жүктөп алып, аны түзмөгүңүзгө өткөрүшүңүз керек. Файлдарды колдоого алынган eReaders'ке өткөрүү үчүн Жардам борборунун нускамаларын аткарыңыз.