Medical Image Analysis

· ·
· Academic Press
eBook
584
페이지
적용 가능
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing

저자 정보

Alejandro F. Frangi is the Bicentennial Turing Chair in Computational Medicine and Royal Academy of Engineering Chair in Emerging Technologies at The University of Manchester, Manchester, UK, with joint appointments at the Schools of Engineering (Department of Computer Science), Faculty of Science and Engineering, and the School of Health Sciences (Division of Informatics, Imaging and Data Science), Faculty of Biology, Medicine and Health. He is a Turing Fellow of the Alan Turing Institute. He holds an Honorary Chair at KU Leuven in the Departments of Electrical Engineering (ESAT) and Cardiovascular Science. He is IEEE Fellow (2014), EAMBES Fellow (2015), SPIE Fellow (2020), MICCAI Fellow (2021), and Royal Academy of Engineering Fellow (2023). The IEEE Engineering in Medicine and Biology Society awarded him the Early Career Award (2006) and Technical Achievement Award (2021). Professor Frangi’s primary research interests are in medical image analysis and modeling, emphasising machine learning (phenomenological models) and computational physiology (mechanistic models). He is an expert in statistical shape modeling, computational anatomy, and image-based computational physiology, delivering novel insights and impact across various imaging modalities and diseases, particularly on cardiovascular MRI, cerebrovascular MRI/CT/3DRA, and musculoskeletal CT/DXA. He is a co-founder of adsilico Ltd., and his work led to products commercialized by GalgoMedical SA. He has published over 285 peer-reviewed papers in scientific journals with over 34,000 citations and has an h-index of 75.

Jerry L. Prince is the William B. Kouwenhoven Professor in the Department of Electrical and Computer Engineering at Johns Hopkins University. He is Director of the Image Analysis and Communications Laboratory (IACL). He also holds joint appointments in the Departments of Radiology and Radiological Science, Biomedical Engineering, Computer Scienceand Applied Mathematics and Statistics at Johns Hopkins University. He received a 1993 National Science Foundation Presidential Faculty Fellows Award, was Maryland’s 1997 Outstanding Young Engineer, and was awarded the MICCAI Society Enduring Impact Award in 2012. He is an IEEE Fellow, MICCAI Fellow, and AIMBE Fellow. Previously he was an Associate Editor of IEEE Transactions on Image Processing and an Associate Editor of IEEE Transactions on Medical Imaging. He is currently a member of the Editorial Boards of Medical Image Analysis and the Proceedings of the IEEE. He is cofounder of Sonavex, Inc., a biotech company located in Baltimore, Maryland, USA. His current research interests include image processing, computer vision, and machine learning with primary application to medical imaging, he has published over 500 articles on these subjects.

Milan Sonka is Professor of Electrical & Computer Engineering, Biomedical Engineering, Ophthalmology & Visual Sciences, and Radiation Oncology, and Lowell C. Battershell Chair in Biomedical Imaging, all at the University of Iowa. He served as Chair of the Department of Electrical and Computer Engineering (2008–2014) and as Associate Dean for Research and Graduate Studies (2014–2019). He is a Fellow of IEEE, Fellow of the American Institute of Medical and Biological Engineers (AIMBE), Fellow of the Medical Image Computing and Computer-Aided Intervention Society (MICCAI), and Fellow of the National Academy of Inventors. He is the Founding Codirector of an interdisciplinary Iowa Institute for Biomedical Imaging (2007–) and Founding Director of the Iowa Initiative for Artificial Intelligence (2019–). He is the author of four editions of an image processing textbook, Image Processing, Analysis, and Machine Vision (1993, 1998, 2008, 2014), editor of one of three volumes of the SPIE Handbook of Medical Imaging (2000), past Editor-in-Chief of “IEEE Transactions on Medical Imaging (2009–2014), and past editorial board member of the “Medical Image Analysis journal. His >700 publications were cited more than 42,000 times, and he has an h-index of 80. He cofounded Medical Imaging Applications LLC and VIDA Diagnostics Inc.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.