Data Science Foundations Tools and Techniques

·
· Addison-Wesley Professional
Ebook
384
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

The Foundational Hands-On Skills You Need to Dive into Data Science

“Freeman and Ross have created the definitive resource for new and aspiring data scientists to learn foundational programming skills.”

–From the foreword by Jared Lander, series editor

Using data science techniques, you can transform raw data into actionable insights for domains ranging from urban planning to precision medicine. Programming Skills for Data Science brings together all the foundational skills you need to get started, even if you have no programming or data science experience.

Leading instructors Michael Freeman and Joel Ross guide you through installing and configuring the tools you need to solve professional-level data science problems, including the widely used R language and Git version-control system. They explain how to wrangle your data into a form where it can be easily used, analyzed, and visualized so others can see the patterns you’ve uncovered. Step by step, you’ll master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales.

Freeman and Ross teach through practical examples and exercises that can be combined into complete data science projects. Everything’s focused on real-world application, so you can quickly start analyzing your own data and getting answers you can act upon. Learn to

  • Install your complete data science environment, including R and RStudio
  • Manage projects efficiently, from version tracking to documentation
  • Host, manage, and collaborate on data science projects with GitHub
  • Master R language fundamentals: syntax, programming concepts, and data structures
  • Load, format, explore, and restructure data for successful analysis
  • Interact with databases and web APIs
  • Master key principles for visualizing data accurately and intuitively
  • Produce engaging, interactive visualizations with ggplot and other R packages
  • Transform analyses into sharable documents and sites with R Markdown
  • Create interactive web data science applications with Shiny
  • Collaborate smoothly as part of a data science team

Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

About the author

Michael Freeman is a senior lecturer at the University of Washington Information School, where he teaches courses in data science, interactive data visualization, and web development. Prior to his teaching career, he worked as a data visualization specialist and research fellow at the Institute for Health Metrics and Evaluation. There, he performed quantitative global health research and built a variety of interactive visualization systems to help researchers and the public explore global health trends. Michael is interested in applications of data visualization to social justice, and holds a Master’s in Public Health from the University of Washington.

Joel Ross is a senior lecturer at the University of Washington Information School, where he teaches courses in web development, mobile application development, software architecture, and introductory programming. While his primary focus is on teaching, his research interests include games and gamification, pervasive systems, computer science education, and social computing. He has also done research on crowdsourcing systems, human computation, and encouraging environmental sustainability. Joel earned his M.S. and Ph.D. in information and computer sciences from the University of California, Irvine.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.