A road map to the current challenges and available opportunities for the research and development of Prognostics and Health Management (PHM), this important work covers all areas of electronics and explains how to:
Prognostics and Health Management of Electronics also explains how to understand statistical techniques and machine learning methods used for diagnostics and prognostics. Using this valuable resource, electrical engineers, data scientists, and design engineers will be able to fully grasp the synergy between IoT, machine learning, and risk assessment.
MICHAEL G. PECHT, PHD, is Chair Professor in Mechanical Engineering and Professor in Applied Mathematics, Statistics and Scientific Computation at the University of Maryland, USA. He is the Founder and Director of the Center for Advanced Life Cycle Engineering (CALCE) at the University of Maryland, USA, which is funded by more than 150 leading electronics companies. Dr. Pecht is an IEEE, ASME, SAE, and IMAPS Fellow and serves as editor-in-chief of IEEE Access. He has written more than 30 books, 700 technical articles, and has 8 patents.
MYEONGSU KANG, PHD, is currently a Research Associate at the Center for Advanced Life Cycle Engineering (CALCE), University of Maryland, USA. His expertise is in data analytics, machine learning, system modeling, and statistics for prognostics and systems health management. He has authored/coauthored more than 60 publications in leading journals and conference proceedings.