Stochastic Network Optimization with Application to Communication and Queueing Systems

· Springer Nature
Ebook
199
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in operations research and economics, where energy-efficient and profit-maximizing decisions must be made without knowing the future. Topics in the text include the following: - Queue stability theory - Backpressure, max-weight, and virtual queue methods - Primal-dual methods for non-convex stochastic utility maximization - Universal scheduling theory for arbitrary sample paths - Approximate and randomized scheduling theory - Optimization of renewal systems and Markov decision systems Detailed examples and numerous problem set questions are provided to reinforce the main concepts. Table of Contents: Introduction / Introduction to Queues / Dynamic Scheduling Example / Optimizing Time Averages / Optimizing Functions of Time Averages / Approximate Scheduling / Optimization of Renewal Systems / Conclusions

About the author

Michael J. Neely received B.S. degrees in both Electrical Engineering and Mathematics from the University of Maryland, College Park, in 1997. He then received a 3 year Department of Defense NDSEG Fellowship for graduate study at the Massachusetts Institute of Technology, where he completed the M.S. degree in 1999 and the Ph.D. in 2003, both in Electrical Engineering. He joined the faculty of Electrical Engineering at the University of Southern California in 2004, where he is currently an Associate Professor. His research interests are in the areas of stochastic network optimization and queueing theory, with applications to wireless networks, mobile ad-hoc networks, and switching systems. Michael received the NSF Career award in 2008 and the Viterbi School of Engineering Junior Research Award in 2009. He is a member of Tau Beta Pi and Phi Beta Kappa.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.