This primarily undergraduate textbook focuses on finite-dimensional optimization. Readers will find: an original and well integrated treatment of semidifferential calculus and optimization; emphasis on the Hadamard subdifferential, introduced at the beginning of the 20th century and somewhat overlooked for many years, with references to original papers by Hadamard (1923) and Fr?chet (1925); fundamentals of convex analysis (convexification, Fenchel duality, linear and quadratic programming, two-person zero-sum games, Lagrange primal and dual problems, semiconvex and semiconcave functions); complete definitions, theorems, and detailed proofs, even though it is not necessary to work through all of them; commentaries that put the subject into historical perspective; numerous examples and exercises throughout each chapter, and answers to the exercises provided in an appendix.