Micro- and Nanoflows: Modeling and Experiments

· · · ·
· Fluid Mechanics and Its Applications 118권 · Springer
eBook
241
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

This book describes physical, mathematical and experimental methods to model flows in micro- and nanofluidic devices. It takes in consideration flows in channels with a characteristic size between several hundreds of micrometers to several nanometers. Methods based on solving kinetic equations, coupled kinetic-hydrodynamic description, and molecular dynamics method are used. Based on detailed measurements of pressure distributions along the straight and bent microchannels, the hydraulic resistance coefficients are refined. Flows of disperse fluids (including disperse nanofluids) are considered in detail. Results of hydrodynamic modeling of the simplest micromixers are reported. Mixing of fluids in a Y-type and T-type micromixers is considered. The authors present a systematic study of jet flows, jets structure and laminar-turbulent transition. The influence of sound on the microjet structure is considered. New phenomena associated with turbulization and relaminarization of the mixing layer of microjets are discussed. Based on the conducted experimental investigations, the authors propose a chart of microjet flow regimes. When addressing the modeling of microflows of nanofluids, the authors show where conventional hydrodynamic approaches can be applied and where more complicated models are needed, and they analyze the hydrodynamic stability of the nanofluid flows. The last part of the book is devoted the statistical theory of the transport processes in fluids under confined conditions. The authors present the constitutive relations and the formulas for transport coefficients. In conclusion the authors present a rigorous analysis of the viscosity and diffusion in nanochannels and in porous media.

저자 정보

Valery Ya. Rudyak, Professor, graduated the physical faculty of the Novosibirsk State University. He completed his Ph.D. dissertation in kinetic theory of gases. In 1990 he defended the doctor of science in physics and mathematics dissertation. He is Honoured Science Worker of Russian Federation. He is head of theoretical mechanics department of the Novosibirsk State University of Architecture and Civil Engineering, simultaneously he is main research scientist of the Siberian Federal University. His main field of expertise includes the following subjects: nonequilibrium statistical mechanics, kinetic theory of gases, rarefied gas dynamics, physics and mechanics of transport processes, transport processes in nanofluids, flows in microchannels, multi-phases fluids, laminar-turbulent transition, CFD and molecular dynamics simulation. He is author of 6 monographs and more than 200 scientific papers. The main subjects of his research last years are the nanofluids transport properties and modelling micro- and nanoflows.

Vladimir M. Aniskin, Doctor, graduated the faculty of aircrafts of the Novosibirsk State Technical University. He completed his Ph.D. dissertation on experimental investigations of hypersonic flows. In 2012 he defended the doctor of science in physics and mathematics dissertation. He is senior researcher in Khristianovich Institute of Theoretical and Applied Mechanics of Siberian Branch of Russian Academy of Sciences in Novosibirsk. His main field of expertise includes the following subjects: investigations of gas microjets, flows of liquids in microchannels, development of methods of microflows diagnostics. He is author of 1 monograph and more than 80 scientific papers.

Anatoly A. Maslov, Professor, graduated the physical faculty of the Novosibirsk State University. He completed his PhD dissertation in numerical investigation of supersonic boundary layer stability. In 1988 he defended the doctor of science in physics and mathematics dissertation. He is head of laboratory " Physical problems of gas-dynamic flows control ", Institute of Theoretical and Applied Mechanics, Russian Academy of Sciences, Siberian Branch, simultaneously he is main research scientist of the Novosibirsk State University. Prof. Maslov's main research interests are: fundamental studies in the areas of experimental fluid dynamics and applied aerodynamics. His current experimental studies include: stability and transition of laminar super- and hypersonic boundary layers; gasdynamic of weakly ionized gases; application of active flow control to aerial vehicles; sensing and control of unsteady flows and separation: and microscale and nanoscale flows. He is author of 4 monographs and more than 200 scientific papers. He is a laureate of the gold medal of N.E. Zhukovsky and the first prize of academician G.A.Petrov for a series of works in the field of stability of the supersonic and hypersonic shear and boundary layers.

Andrey V. Minakov, Doctor, graduated from the Krasnoyarsk Technical University in 2005 in direction of the technical physics. Now he is assistant professor of the Siberian Federal University. His main field of expertise includes the following subjects: thermophysical properties of nanofluids, CFD modeling of complex fluid flows including microflows, physics of dispersed fluids, modeling heat and mass transfer in many applications. He is author more than 90 scientific papers and one monograph.

Sergey G. Mironov, Professor, graduated the physical faculty of the Novosibirsk State University. He completed his Ph.D. dissertation in experimental rarefied gas-dynamics. In 2003 he defended the doctor of science in physics and mathematics dissertation. He is main researcher in Khristianovich Institute of Theoretical and Applied Mechanics of Siberian Branch of Russian Academy of Sciences in Novosibirsk and professor in the physical faculty of the Novosibirsk State University. His main field of expertise includes the following subjects: stability hypersonic boundary layers, supersonic jets, supersonic aerodynamics, microscale flows. He is author of 1 monograph and more than 150 scientific papers. He is a laureate of first prize of academician G.A.Petrov for a series of works in the field of stability of the supersonic and hypersonic shear and boundary layers.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.