Generalised Ramsey numbers and Bruhat order on involutions

· Linköping Studies in Science and Technology. Thesis Book 23 · Linköping University Electronic Press
4.3
6 reviews
Ebook
14
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

This thesis consists of two papers within two different areas of  combinatorics.

Ramsey theory is a classic topic in graph theory, and Paper A deals with two of its most fundamental problems: to compute Ramsey numbers and to characterise critical graphs. More precisely, we study generalised Ramsey numbers for two sets ?1 and ?2 of cycles. We determine, in particular, all generalised Ramsey numbers R(?1, ?2) such that ?1 or ?2 contains a cycle of length at most 6, or the shortest cycle in each set is even. This generalises previous results of Erdös, Faudree, Rosta, Rousseau, and Schelp. Furthermore, we give a conjecture for the general case. We also characterise many (?1, ?2)-critical graphs. As special cases, we obtain complete characterisations of all (Cn,C3)-critical graphs for n ? 5, and all (Cn,C5)-critical graphs for n ? 6.

In Paper B, we study the combinatorics of certain partially ordered sets. These posets are unions of conjugacy classes of involutions in the symmetric group Sn, with the order induced by the Bruhat order on Sn. We obtain a complete characterisation of the posets that are graded. In particular, we prove that the set of involutions with exactly one fixed point is graded, which settles a conjecture of Hultman in the affirmative. When the posets are graded, we give their rank functions. We also give a short, new proof of the EL-shellability of the set of fixed-point-free involutions, recently proved by Can, Cherniavsky, and Twelbeck.

Ratings and reviews

4.3
6 reviews
MAVERICK 128
February 27, 2018
Okay
1 person found this review helpful
Did you find this helpful?
779 ATCHAYA M
August 25, 2023
wow
Did you find this helpful?
779 Atchaya m
August 25, 2023
Wow
Did you find this helpful?

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.