Modeling Influenced Criteria in Classifiers' Imbalanced Challenges Based on TrSS Bolstered by The Vague Nature of Neutrosophic Theory

· · ·
· Infinite Study
Liburu elektronikoa
16
orri
Egokia
Balorazioak eta iritziak ez daude egiaztatuta  Lortu informazio gehiago

Liburu elektroniko honi buruz

Because of the advancements in technology, classification learning has become an essential activity in today's environment. Unfortunately, through the classification process, we noticed that the classifiers are unable to deal with the imbalanced data, which indicates there are many more instances (majority instances) in one class than in another. Identifying an appropriate classifier among the various candidates is a time-consuming and complex effort. Improper selection can hinder the classification model's ability to provide the right outcomes. Also, this operation requires preference among a set of alternatives by a set of criteria. Hence, multi-criteria decision-making (MCDM) methodology is the appropriate methodology can deploy in this problem. Accordingly, we applied MCDM and supported it through harnessing neurotrophic theory as motivators in uncertainty circumstances. Single value Neutrosophic sets (SVNSs) are applied as branch of Neutrosophic theory for evaluating and ranks classifiers and allows experts to select the best classifier So, to select the best classifier (alternative), we use MCDM method called Multi- Attributive Ideal-Real Comparative Analysis (MAIRAC) and the criteria weight calculation method called Stepwise Weight Assessment Ratio Analysis (SWARA) where these methods consider single-value neutrosophic sets (SVNSs) to improve and boost these techniques in uncertain scenarios. All these methods are applied after modeling criteria and its sub-criteria through a novel technique is Tree Soft Sets (TrSS). Ultimately, the findings of leveraging these techniques indicated that the hybrid multi-criteria meta-learner (HML)-based classifier is the best classifier compared to the other compared models. 

Baloratu liburu elektroniko hau

Eman iezaguzu iritzia.

Irakurtzeko informazioa

Telefono adimendunak eta tabletak
Instalatu Android eta iPad/iPhone gailuetarako Google Play Liburuak aplikazioa. Zure kontuarekin automatikoki sinkronizatzen da, eta konexioarekin nahiz gabe irakurri ahal izango dituzu liburuak, edonon zaudela ere.
Ordenagailu eramangarriak eta mahaigainekoak
Google Play-n erositako audio-liburuak entzuteko aukera ematen du ordenagailuko web-arakatzailearen bidez.
Irakurgailu elektronikoak eta bestelako gailuak
Tinta elektronikoa duten gailuetan (adibidez, Kobo-ko irakurgailu elektronikoak) liburuak irakurtzeko, fitxategi bat deskargatu beharko duzu, eta hura gailura transferitu. Jarraitu laguntza-zentroko argibide xehatuei fitxategiak irakurgailu elektroniko bateragarrietara transferitzeko.