Modelling of Simplified Dynamical Systems

· Springer Science & Business Media
E-boek
171
Bladsye
Graderings en resensies word nie geverifieer nie. Kom meer te wete

Meer oor hierdie e-boek

Problems involving synthesis of mathematical models of various physical systems, making use of these models in practice and verifying them qualitatively has - come an especially important area of research since more and more physical - periments are being replaced by computer simulations. Such simulations should make it possible to carry out a comprehensive analysis of the various properties of the system being modelled. Most importantly its dynamic properties can be - dressed in a situation where this would be difficult or even impossible to achieve through a direct physical experiment. To carry out a simulation of a real, phy- cally existing system it is necessary to have its mathematical description; the s- tem being described mathematically by equations, which include certain variables, their derivatives and integrals. If a single independent variable is sufficient in - der to describe the system, then derivatives and integrals with respect to only that variable will appear in the equations. Differentiation of the equation allows the integrals to be eliminated and produces an equation which includes derivatives with respect to only one independent variable i. e. an ordinary differential equation. In practice, most physical systems can be described with sufficient accuracy by linear differential equations with time invariant coefficients. Chapter 2 is devoted to the description of models by such equations, with time as the independent va- able.

Gradeer hierdie e-boek

Sê vir ons wat jy dink.

Lees inligting

Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.