Modelling of Simplified Dynamical Systems

· Springer Science & Business Media
El. knyga
171
Puslapiai
Įvertinimai ir apžvalgos nepatvirtinti. Sužinokite daugiau

Apie šią el. knygą

Problems involving synthesis of mathematical models of various physical systems, making use of these models in practice and verifying them qualitatively has - come an especially important area of research since more and more physical - periments are being replaced by computer simulations. Such simulations should make it possible to carry out a comprehensive analysis of the various properties of the system being modelled. Most importantly its dynamic properties can be - dressed in a situation where this would be difficult or even impossible to achieve through a direct physical experiment. To carry out a simulation of a real, phy- cally existing system it is necessary to have its mathematical description; the s- tem being described mathematically by equations, which include certain variables, their derivatives and integrals. If a single independent variable is sufficient in - der to describe the system, then derivatives and integrals with respect to only that variable will appear in the equations. Differentiation of the equation allows the integrals to be eliminated and produces an equation which includes derivatives with respect to only one independent variable i. e. an ordinary differential equation. In practice, most physical systems can be described with sufficient accuracy by linear differential equations with time invariant coefficients. Chapter 2 is devoted to the description of models by such equations, with time as the independent va- able.

Įvertinti šią el. knygą

Pasidalykite savo nuomone.

Skaitymo informacija

Išmanieji telefonai ir planšetiniai kompiuteriai
Įdiekite „Google Play“ knygų programą, skirtą „Android“ ir „iPad“ / „iPhone“. Ji automatiškai susinchronizuojama su paskyra ir jūs galite skaityti tiek prisijungę, tiek neprisijungę, kad ir kur būtumėte.
Nešiojamieji ir staliniai kompiuteriai
Galite klausyti garsinių knygų, įsigytų sistemoje „Google Play“ naudojant kompiuterio žiniatinklio naršyklę.
El. knygų skaitytuvai ir kiti įrenginiai
Jei norite skaityti el. skaitytuvuose, pvz., „Kobo eReader“, turite atsisiųsti failą ir perkelti jį į įrenginį. Kad perkeltumėte failus į palaikomus el. skaitytuvus, vadovaukitės išsamiomis pagalbos centro instrukcijomis.