Models of Phase Transitions

· Progress in Nonlinear Differential Equations and Their Applications Βιβλίο 28 · Springer Science & Business Media
ebook
326
Σελίδες
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

... "What do you call work?" "Why ain't that work?" Tom resumed his whitewashing, and answered carelessly: "Well. lI1a), he it is, and maybe it aill't. All I know, is, it suits Tom Sawvc/:" "Oil CO/lll!, IIOW, Will do not mean to let 011 that you like it?" The brush continued to move. "Likc it? Well, I do not see wlzy I oughtn't to like it. Does a hoy get a chance to whitewash a fence every day?" That put the thing ill a Ilew light. Ben stopped nibhling the apple ... (From Mark Twain's Adventures of Tom Sawyer, Chapter II.) Mathematics can put quantitative phenomena in a new light; in turn applications may provide a vivid support for mathematical concepts. This volume illustrates some aspects of the mathematical treatment of phase transitions, namely, the classical Stefan problem and its generalizations. The in tended reader is a researcher in application-oriented mathematics. An effort has been made to make a part of the book accessible to beginners, as well as physicists and engineers with a mathematical background. Some room has also been devoted to illustrate analytical tools. This volume deals with research I initiated when I was affiliated with the Istituto di Analisi Numerica del C.N.R. in Pavia, and then continued at the Dipartimento di Matematica dell'Universita di Trento. It was typeset by the author in plain TEX

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.