Multiplicative Euclidean and Non-Euclidean Geometry

· Cambridge Scholars Publishing
E-bog
370
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

Differential and integral calculus, the most applicable mathematical theory, was created independently by Isaac Newton and Gottfried Wilhelm Leibnitz in the second half of the 17th century. Later, Leonard Euler redirected calculus by giving a central place to the concept of function, and thus founded analysis. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. From 1967 until 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance.

This book is devoted to multiplicative Euclidean and non-Euclidean geometry, summarizing the most recent contributions in this area. It will appeal to a wide audience of specialists such as mathematicians, physicists, engineers and biologists, and can be used as a textbook at the graduate level or as a reference book for several disciplines.

Om forfatteren

Svetlin G. Georgiev works on various aspects of mathematics. His current research focuses on harmonic analysis, ordinary differential equations, partial differential equations, fractional calculus, time scale calculus, integral equations, numerical analysis, differential geometry, and dynamic geometry.

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.