Multiplicative Euclidean and Non-Euclidean Geometry

· Cambridge Scholars Publishing
Carte electronică
370
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Differential and integral calculus, the most applicable mathematical theory, was created independently by Isaac Newton and Gottfried Wilhelm Leibnitz in the second half of the 17th century. Later, Leonard Euler redirected calculus by giving a central place to the concept of function, and thus founded analysis. Two operations, differentiation and integration, are basic in calculus and analysis. In fact, they are the infinitesimal versions of the subtraction and addition operations on numbers, respectively. From 1967 until 1970, Michael Grossman and Robert Katz gave definitions of a new kind of derivative and integral, moving the roles of subtraction and addition to division and multiplication, and thus established a new calculus, called multiplicative calculus. Multiplicative calculus can especially be useful as a mathematical tool for economics and finance.

This book is devoted to multiplicative Euclidean and non-Euclidean geometry, summarizing the most recent contributions in this area. It will appeal to a wide audience of specialists such as mathematicians, physicists, engineers and biologists, and can be used as a textbook at the graduate level or as a reference book for several disciplines.

Despre autor

Svetlin G. Georgiev works on various aspects of mathematics. His current research focuses on harmonic analysis, ordinary differential equations, partial differential equations, fractional calculus, time scale calculus, integral equations, numerical analysis, differential geometry, and dynamic geometry.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.