Multiplicative Partial Differential Equations

·
· CRC Press
Carte electronică
268
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

Multiplicative Partial Differential Equations presents an introduction to the theory of multiplicative partial differential equations (MPDEs). It is suitable for all types of basic courses on MPDEs. The authors' aim is to present a clear and well-organized treatment of the concepts behind the development of mathematics and solution techniques. The text is presented in a highly readable, mathematically solid format. Many practical problems are illustrated, displaying a wide variety of solution techniques.

Features

  • Includes new classification and canonical forms of second-order MPDEs
  • Proposes the latest techniques in solving the multiplicative wave equation such as the method of separation of variables and the energy method
  • Useful in allowing for the basic properties of multiplicative elliptic problems, fundamental solutions, multiplicative integral representation of multiplicative harmonic functions, meant-value formulas, strong principle of maximum, multiplicative Poisson equation, multiplicative Green functions, method of separation of variables, and theorems of Liouville and Harnack

Despre autor

Svetlin G. Georgiev has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations and dynamic calculus on time scales.

Khaled Zennir received his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria (assist. professor). He obtained his highest diploma in Algeria (habilitation, mathematics) from Constantine University, Algeria in 2015 (assoc. professor). He is now an associate professor at Qassim University, KSA. His research interests lie in nonlinear hyperbolic partial differential equations: global existence, blow-up and long time behavior.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.