Mutual Invadability Implies Coexistence in Spatial Models

· Courant Lecture Notes کتاب 740 · American Mathematical Soc.
ای-کتاب
118
صفحه‌ها
رده‌بندی‌ها و مرورها به‌تأیید نمی‌رسند.  بیشتر بدانید

درباره این ای-کتاب

In (1994) Durrett and Levin proposed that the equilibrium behaviour of stochastic spatial models could be determined from properties of the solution of the mean field ordinary differential equation (ODE) that is obtained by pretending that all sites are always independent. Here Durrett proves a general result in support of that picture. He gives a condition on an ordinary differential equation which implies that densities stay bounded away from 0 in the associated reaction-diffusion equation, and that coexistence occurs in the stochastic spatial model with fast stirring. Then, using biologists' notion of invadability as a guide, he shows how this condition can be checked in a wide variety of examples that involve two or three species: epidemics, diploid genetics models, predator-prey systems, and various competition models.

رده‌بندی این کتاب الکترونیک

نظرات خود را به ما بگویید.

اطلاعات مطالعه

تلفن هوشمند و رایانه لوحی
برنامه «کتاب‌های Google Play» را برای Android و iPad/iPhone بارگیری کنید. به‌طور خودکار با حسابتان همگام‌سازی می‌شود و به شما امکان می‌دهد هر کجا که هستید به‌صورت آنلاین یا آفلاین بخوانید.
رایانه کیفی و رایانه
با استفاده از مرورگر وب رایانه‌تان می‌توانید به کتاب‌های صوتی خریداری‌شده در Google Play گوش دهید.
eReaderها و دستگاه‌های دیگر
برای خواندن در دستگاه‌های جوهر الکترونیکی مانند کتاب‌خوان‌های الکترونیکی Kobo، باید فایل مدنظرتان را بارگیری و به دستگاه منتقل کنید. برای انتقال فایل به کتاب‌خوان‌های الکترونیکی پشتیبانی‌شده، دستورالعمل‌های کامل مرکز راهنمایی را دنبال کنید.