Mutual Invadability Implies Coexistence in Spatial Models

· Courant Lecture Notes Книга 740 · American Mathematical Soc.
Электронная книга
118
Количество страниц
Оценки и отзывы не проверены. Подробнее…

Об электронной книге

In (1994) Durrett and Levin proposed that the equilibrium behaviour of stochastic spatial models could be determined from properties of the solution of the mean field ordinary differential equation (ODE) that is obtained by pretending that all sites are always independent. Here Durrett proves a general result in support of that picture. He gives a condition on an ordinary differential equation which implies that densities stay bounded away from 0 in the associated reaction-diffusion equation, and that coexistence occurs in the stochastic spatial model with fast stirring. Then, using biologists' notion of invadability as a guide, he shows how this condition can be checked in a wide variety of examples that involve two or three species: epidemics, diploid genetics models, predator-prey systems, and various competition models.

Оцените электронную книгу

Поделитесь с нами своим мнением.

Где читать книги

Смартфоны и планшеты
Установите приложение Google Play Книги для Android или iPad/iPhone. Оно синхронизируется с вашим аккаунтом автоматически, и вы сможете читать любимые книги онлайн и офлайн где угодно.
Ноутбуки и настольные компьютеры
Слушайте аудиокниги из Google Play в веб-браузере на компьютере.
Устройства для чтения книг
Чтобы открыть книгу на таком устройстве для чтения, как Kobo, скачайте файл и добавьте его на устройство. Подробные инструкции можно найти в Справочном центре.