Mutual Invadability Implies Coexistence in Spatial Models

· Courant Lecture Notes පොත 740 · American Mathematical Soc.
ඉ-පොත
118
පිටු
ඇගයීම් සහ සමාලෝචන සත්‍යාපනය කර නැත වැඩිදුර දැන ගන්න

මෙම ඉ-පොත ගැන

In (1994) Durrett and Levin proposed that the equilibrium behaviour of stochastic spatial models could be determined from properties of the solution of the mean field ordinary differential equation (ODE) that is obtained by pretending that all sites are always independent. Here Durrett proves a general result in support of that picture. He gives a condition on an ordinary differential equation which implies that densities stay bounded away from 0 in the associated reaction-diffusion equation, and that coexistence occurs in the stochastic spatial model with fast stirring. Then, using biologists' notion of invadability as a guide, he shows how this condition can be checked in a wide variety of examples that involve two or three species: epidemics, diploid genetics models, predator-prey systems, and various competition models.

මෙම ඉ-පොත අගයන්න

ඔබ සිතන දෙය අපට කියන්න.

කියවීමේ තොරතුරු

ස්මාර්ට් දුරකථන සහ ටැබ්ලට්
Android සහ iPad/iPhone සඳහා Google Play පොත් යෙදුම ස්ථාපනය කරන්න. එය ඔබේ ගිණුම සමඟ ස්වයංක්‍රීයව සමමුහුර්ත කරන අතර ඔබට ඕනෑම තැනක සිට සබැඳිව හෝ නොබැඳිව කියවීමට ඉඩ සලසයි.
ලැප්ටොප් සහ පරිගණක
ඔබට ඔබේ පරිගණකයේ වෙබ් බ්‍රව්සරය භාවිතයෙන් Google Play මත මිලදී ගත් ශ්‍රව්‍යපොත්වලට සවන් දිය හැක.
eReaders සහ වෙනත් උපාංග
Kobo eReaders වැනි e-ink උපාංග පිළිබඳ කියවීමට, ඔබ විසින් ගොනුවක් බාගෙන ඔබේ උපාංගයට එය මාරු කිරීම සිදු කළ යුතු වේ. ආධාරකරු ඉ-කියවනයට ගොනු මාරු කිරීමට විස්තරාත්මක උදවු මධ්‍යස්ථාන උපදෙස් අනුගමනය කරන්න.