Nanostructured Lithium-ion Battery Materials: Synthesis, Characterization, and Applications

· · ·
· Elsevier
电子书
700
符合条件
评分和评价未经验证  了解详情

关于此电子书

Nanostructured Lithium-ion Battery Materials: Synthesis and Applications provides a detailed overview of nanostructured materials for application in Li-ion batteries, supporting improvements in materials selection and battery performance. The book begins by presenting the fundamentals of Lithium-ion batteries, including electrochemistry and reaction mechanism, advantages and disadvantages of Li-ion batteries, and characterization methods. Subsequent sections provide in-depth coverage of a range of nanostructured materials as applied to cathodes, electrolytes, separators, and anodes. Finally, other key aspects are discussed, including industrial scale-up, safety, life cycle analysis, recycling, and future research trends. This is a valuable resource for researchers, faculty, and advanced students across nanotechnology, materials science, battery technology, energy storage, chemistry, applied physics, chemical engineering, and electrical engineering. In an industrial setting, this book will be of interest to scientists, engineers, and R&D professionals working with advanced materials for Li-ion batteries and other energy storage applications. - Introduces fundamental of Lithium-ion batteries, electrochemistry, and characterization methods - Offers in-depth information on nanostructured cathode, electrolyte, separator, and anode materials - Addresses lab to industry challenges, safety, lifecycle analysis, recycling, and future opportunities

作者简介

Sabu Thomas is a Professor and Director of the International and Interuniversity Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, India. He is internationally recognized for his contributions to polymer science and engineering, with his research interests encompassing polymer nanocomposites, elastomers, polymer blends, interpenetrating polymer networks, polymer membranes, green composites, nanocomposites, nanomedicine, and green nanotechnology. His groundbreaking inventions in polymer nanocomposites, polymer blends, green bionanotechnology, and nano-biomedical sciences have significantly advanced the development of new materials for the automotive, space, housing, and biomedical fields.

Prof. Oumarou Savadogo is Full Professor and UNESCO Chair on Sustainable Engineering and Applied Solar Technologies, at Polytechnique Montréal, Quebec, Canada.With a background in materials science, he was also previously a process engineer at Rhône-Siltec (production of silicon for photovoltaic solar cells) and a postdoctoral fellow at CNRS-Bellevue, both in France. At Polytechnique Montréal, he is Founding Director of the Laboratory of New Materials for Energy and Electrochemistry, and is responsible for the graduate programs on Renewable Energy in Energy Engineering and Energy and Sustainable Development in Chemical Engineering. Prof. Savadogo’s research interests include the development of new materials for solar energy, fuel cells, batteries, electrochemical capacitors, electrochemistry, metallurgical processes, corrosion, and microbial cells. He is author or co-author of more than 200 scientific publications in refereed scientific journals, Founding Editor of the Journal of New Materials for Electrochemical Systems, and a member of the advisory/editorial boards of the Journal of Enzyme Engineering, the Journal of Materials, Membranes, and Discover Energy. He is also member of the Broad of Directors and Advisory Board of the International Hydrogen Energy Association.

Amadou Belal Gueye is a Research Scholar at the School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India. He received his bachelor’s degree in physics-chemistry and his master’s degree in physical chemistry applied to energy and analysis, from Cheikh Anta Diop University, Dakar, Senegal. He works in the field of lithium/sulfur batteries.

She completed her Ph.D. in 2015. Following her Ph.D., she conducted postdoctoral research at the Centre for Advanced Materials, Qatar University, Doha-Qatar, under Prof. Mariam Ali S A Al-Maadeed, where she worked on improving the adhesion between fibers and LDPE via plasma modification. She also pursued postdoctoral research with Prof. Koichi Goda in the Department of Mechanical Engineering, Yamaguchi University, Japan, in collaboration with TOCLAS Corporation, Japan. She was awarded the Dr. D. S. Kothari Postdoctoral Fellowship (DSKPDF) to work with Prof. Sabu Thomas at Mahatma Gandhi University.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。