Neutrosophic Multi-Criteria Decision Making: Special Issue

· ·
· Infinite Study
電子書籍
208
ページ
利用可能
評価とレビューは確認済みではありません 詳細

この電子書籍について

The notion of a neutrosophic quadruple BCK/BCI-number is considered, and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. iven subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given.

著者について

Florentin Smarandache, polymath, professor of mathematics, scientist, writer, and artist. He got his M. Sc. in Mathematics and Computer Science from the University of Craiova, Romania, and his Ph. D in Mathematics from the State University of Kishinev and pursued Post-Doctoral studies in Applied Mathematics at Okayama University of Sciences, Japan. He is the founder of neutrosophic set, logic, probability, and statistics and, since 1995, has published hundreds of papers on neutrosophic physics, superluminal and instantaneous physics, unmatter, absolute theory of relativity, redshift and blueshift due to the medium gradient and refraction index besides the Doppler effect, paradoxism, outerart, neutrosophy as a new branch of philosophy, Law of Included Multiple-Middle, degre of dependence and independence between the neutrosophic components, refined neutrosophic over-under-off-set, neutrosophic overset, neutrosophic triplet and duplet structures, DSmT, and so on in numerous peer-reviewed international journals and books and he has presented papers and plenary lectures in many international conferences around the world.

この電子書籍を評価する

ご感想をお聞かせください。

読書情報

スマートフォンとタブレット
AndroidiPad / iPhone 用の Google Play ブックス アプリをインストールしてください。このアプリがアカウントと自動的に同期するため、どこでもオンラインやオフラインで読むことができます。
ノートパソコンとデスクトップ パソコン
Google Play で購入したオーディブックは、パソコンのウェブブラウザで再生できます。
電子書籍リーダーなどのデバイス
Kobo 電子書籍リーダーなどの E Ink デバイスで読むには、ファイルをダウンロードしてデバイスに転送する必要があります。サポートされている電子書籍リーダーにファイルを転送する方法について詳しくは、ヘルプセンターをご覧ください。