Neutrosophic Multi-Criteria Decision Making: Special Issue

· ·
· Infinite Study
Электрондық кітап
208
бет
Жарамды
Рейтингілер мен пікірлер тексерілмеген. Толығырақ

Осы электрондық кітап туралы ақпарат

The notion of a neutrosophic quadruple BCK/BCI-number is considered, and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. iven subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given.

Авторы туралы

Florentin Smarandache, polymath, professor of mathematics, scientist, writer, and artist. He got his M. Sc. in Mathematics and Computer Science from the University of Craiova, Romania, and his Ph. D in Mathematics from the State University of Kishinev and pursued Post-Doctoral studies in Applied Mathematics at Okayama University of Sciences, Japan. He is the founder of neutrosophic set, logic, probability, and statistics and, since 1995, has published hundreds of papers on neutrosophic physics, superluminal and instantaneous physics, unmatter, absolute theory of relativity, redshift and blueshift due to the medium gradient and refraction index besides the Doppler effect, paradoxism, outerart, neutrosophy as a new branch of philosophy, Law of Included Multiple-Middle, degre of dependence and independence between the neutrosophic components, refined neutrosophic over-under-off-set, neutrosophic overset, neutrosophic triplet and duplet structures, DSmT, and so on in numerous peer-reviewed international journals and books and he has presented papers and plenary lectures in many international conferences around the world.

Осы электрондық кітапты бағалаңыз.

Пікіріңізбен бөлісіңіз.

Ақпаратты оқу

Смартфондар мен планшеттер
Android және iPad/iPhone үшін Google Play Books қолданбасын орнатыңыз. Ол аккаунтпен автоматты түрде синхрондалады және қайда болсаңыз да, онлайн не офлайн режимде оқуға мүмкіндік береді.
Ноутбуктар мен компьютерлер
Google Play дүкенінде сатып алған аудиокітаптарды компьютердің браузерінде тыңдауыңызға болады.
eReader және басқа құрылғылар
Kobo eReader сияқты E-ink технологиясымен жұмыс істейтін құрылғылардан оқу үшін файлды жүктеп, оны құрылғыға жіберу керек. Қолдау көрсетілетін eReader құрылғысына файл жіберу үшін Анықтама орталығының нұсқауларын орындаңыз.