Neutrosophic Multi-Criteria Decision Making: Special Issue

· ·
· Infinite Study
E-bok
208
Sider
Kvalifisert
Vurderinger og anmeldelser blir ikke kontrollert  Finn ut mer

Om denne e-boken

The notion of a neutrosophic quadruple BCK/BCI-number is considered, and a neutrosophic quadruple BCK/BCI-algebra, which consists of neutrosophic quadruple BCK/BCI-numbers, is constructed. Several properties are investigated, and a (positive implicative) ideal in a neutrosophic quadruple BCK-algebra and a closed ideal in a neutrosophic quadruple BCI-algebra are studied. iven subsets A and B of a BCK/BCI-algebra, the set NQ(A,B), which consists of neutrosophic quadruple BCK/BCInumbers with a condition, is established. Conditions for the set NQ(A,B) to be a (positive implicative) ideal of a neutrosophic quadruple BCK-algebra are provided, and conditions for the set NQ(A,B) to be a (closed) ideal of a neutrosophic quadruple BCI-algebra are given.

Om forfatteren

Florentin Smarandache, polymath, professor of mathematics, scientist, writer, and artist. He got his M. Sc. in Mathematics and Computer Science from the University of Craiova, Romania, and his Ph. D in Mathematics from the State University of Kishinev and pursued Post-Doctoral studies in Applied Mathematics at Okayama University of Sciences, Japan. He is the founder of neutrosophic set, logic, probability, and statistics and, since 1995, has published hundreds of papers on neutrosophic physics, superluminal and instantaneous physics, unmatter, absolute theory of relativity, redshift and blueshift due to the medium gradient and refraction index besides the Doppler effect, paradoxism, outerart, neutrosophy as a new branch of philosophy, Law of Included Multiple-Middle, degre of dependence and independence between the neutrosophic components, refined neutrosophic over-under-off-set, neutrosophic overset, neutrosophic triplet and duplet structures, DSmT, and so on in numerous peer-reviewed international journals and books and he has presented papers and plenary lectures in many international conferences around the world.

Vurder denne e-boken

Fortell oss hva du mener.

Hvordan lese innhold

Smarttelefoner og nettbrett
Installer Google Play Bøker-appen for Android og iPad/iPhone. Den synkroniseres automatisk med kontoen din og lar deg lese både med og uten nett – uansett hvor du er.
Datamaskiner
Du kan lytte til lydbøker du har kjøpt på Google Play, i nettleseren på datamaskinen din.
Lesebrett og andre enheter
For å lese på lesebrett som Kobo eReader må du laste ned en fil og overføre den til enheten din. Følg den detaljerte veiledningen i brukerstøtten for å overføre filene til støttede lesebrett.