Nonholonomic Mechanics and Control

· Interdisciplinary Applied Mathematics 24권 · Springer Science & Business Media
eBook
484
페이지
검증되지 않은 평점과 리뷰입니다.  자세히 알아보기

eBook 정보

Our goal in this book is to explore some of the connections between control theory and geometric mechanics; that is, we link control theory with a g- metric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems s- ject to motion constraints. This synthesis of topics is appropriate, since there is a particularly rich connection between mechanics and nonlinear control theory. While an introduction to many important aspects of the mechanics of nonholonomically constrained systems may be found in such sources as the monograph of Neimark and Fufaev [1972], the geometric view as well as the control theory of such systems remains largely sc- tered through various research journals. Our aim is to provide a uni?ed treatment of nonlinear control theory and constrained mechanical systems that will incorporate material that has not yet made its way into texts and monographs. Mechanicshastraditionallydescribedthebehavioroffreeandinteracting particles and bodies, the interaction being described by potential forces. It encompasses the Lagrangian and Hamiltonian pictures and in its modern form relies heavily on the tools of di?erential geometry (see, for example, Abraham and Marsden [1978]and Arnold [1989]). From our own point of view,ourpapersBloch,Krishnaprasad,Marsden,andMurray[1996],Bloch and Crouch [1995], and Baillieul [1998] have been particularly in?uential in the formulations presented in this book. Control Theory and Nonholonomic Systems. Control theory is the theory of prescribing motion for dynamical systems rather than describing vi Preface their observed behavior.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.