Nonlinear Programming

· Classics in Applied Mathematics Βιβλίο 10 · SIAM
ebook
235
Σελίδες
Κατάλληλο
Οι αξιολογήσεις και οι κριτικές δεν επαληθεύονται  Μάθετε περισσότερα

Σχετικά με το ebook

This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions.

Αξιολογήστε αυτό το ebook

Πείτε μας τη γνώμη σας.

Πληροφορίες ανάγνωσης

Smartphone και tablet
Εγκαταστήστε την εφαρμογή Βιβλία Google Play για Android και iPad/iPhone. Συγχρονίζεται αυτόματα με τον λογαριασμό σας και σας επιτρέπει να διαβάζετε στο διαδίκτυο ή εκτός σύνδεσης, όπου κι αν βρίσκεστε.
Φορητοί και επιτραπέζιοι υπολογιστές
Μπορείτε να ακούσετε ηχητικά βιβλία τα οποία αγοράσατε στο Google Play, χρησιμοποιώντας το πρόγραμμα περιήγησης στον ιστό του υπολογιστή σας.
eReader και άλλες συσκευές
Για να διαβάσετε περιεχόμενο σε συσκευές e-ink, όπως είναι οι συσκευές Kobo eReader, θα χρειαστεί να κατεβάσετε ένα αρχείο και να το μεταφέρετε στη συσκευή σας. Ακολουθήστε τις αναλυτικές οδηγίες του Κέντρου βοήθειας για να μεταφέρετε αρχεία σε υποστηριζόμενα eReader.