Nonlinear Programming

· Classics in Applied Mathematics Libro 10 · SIAM
Libro electrónico
235
Páginas
Apto
Las calificaciones y opiniones no están verificadas. Más información

Acerca de este libro electrónico

This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.