In this paper we present a systematical approach to nonoscillation and disconjugacy normconditionn for linear differential systems and equations. We show that the infima of the appropriate integral functionals are constants for nonoscillation and disconjugacy criteria. Applying an interative method we prove that for some variational problems the minimal solutions exist and satisfy the Euler-Lagrange equations. We compute the infima in questions in certain cases. Thus we obtain many known and new nonoscillation and disconjugacy criteria. Finally, we apply our results to establish uniqueness of multipoint boundary value problems for certain nonlinear systems and equations.
ຊຸດ
ໃຫ້ຄະແນນ e-book ນີ້
ບອກພວກເຮົາວ່າທ່ານຄິດແນວໃດ.
ອ່ານຂໍ້ມູນຂ່າວສານ
ສະມາດໂຟນ ແລະ ແທັບເລັດ
ຕິດຕັ້ງ ແອັບ Google Play Books ສຳລັບ Android ແລະ iPad/iPhone. ມັນຊິ້ງຂໍ້ມູນໂດຍອັດຕະໂນມັດກັບບັນຊີຂອງທ່ານ ແລະ ອະນຸຍາດໃຫ້ທ່ານອ່ານທາງອອນລາຍ ຫຼື ແບບອອບລາຍໄດ້ ບໍ່ວ່າທ່ານຈະຢູ່ໃສ.
ແລັບທັອບ ແລະ ຄອມພິວເຕີ
ທ່ານສາມາດຟັງປຶ້ມສຽງທີ່ຊື້ໃນ Google Play ໂດຍໃຊ້ໂປຣແກຣມທ່ອງເວັບຂອງຄອມພິວເຕີຂອງທ່ານໄດ້.