Nonlinear Programming 2 covers the proceedings of the Special Interest Group on Mathematical Programming Symposium conducted by the Computer Sciences Department at the University of Wisconsin, Madison, on April 15-17, 1974. This book is divided into 13 chapters and begins with a survey of the global and superlinear convergence of a class of algorithms obtained by imposing changing bounds on the variables of the problem. The succeeding chapters deal with the convergence of the well-known reduced gradient method under suitable conditions and a superlinearly convergent quasi-Newton method for unconstrained minimization. These topics are followed by discussion of a superlinearly convergent algorithm for linearly constrained optimization problems and the effective methods for constrained optimization, namely the method of augmented Lagrangians. Other chapters explore a method for handling minimization problems with discontinuous derivatives and the advantages of factorizations of updating for Jacobian-related matrices in minimization problems. The last chapters present the Newton-like methods for the solution of nonlinear equations and inequalities, along with the various aspects of integer programming. This book will prove useful to mathematicians and computer scientists.