O-Minimality and Diophantine Geometry

·
· London Mathematical Society Lecture Note Series 421. knjiga · Cambridge University Press
E-knjiga
235
Broj stranica
Ocjene i recenzije nisu potvrđene  Saznajte više

O ovoj e-knjizi

This collection of articles, originating from a short course held at the University of Manchester, explores the ideas behind Pila's proof of the Andre–Oort conjecture for products of modular curves. The basic strategy has three main ingredients: the Pila–Wilkie theorem, bounds on Galois orbits, and functional transcendence results. All of these topics are covered in this volume, making it ideal for researchers wishing to keep up to date with the latest developments in the field. Original papers are combined with background articles in both the number theoretic and model theoretic aspects of the subject. These include Martin Orr's survey of abelian varieties, Christopher Daw's introduction to Shimura varieties, and Jacob Tsimerman's proof via o-minimality of Ax's theorem on the functional case of Schanuel's conjecture.

O autoru

A. J. Wilkie is the Fielden Professor of Pure Mathematics at the University of Manchester. He has twice been joint winner of the Association for Symbolic Logic's Karp Prize. He is a Fellow of the Royal Society, of the American Mathematical Society and a member of Academia Europaea. Wilkie recently served as President of the Association for Symbolic Logic from 2010 to 2013.

G. O. Jones is a Researcher in the School of Mathematics at the University of Manchester.

Ocijenite ovu e-knjigu

Recite nam šta mislite.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play Knjige za Android i iPad/iPhone uređaje. Aplikacija se automatski sinhronizira s vašim računom i omogućava vam čitanje na mreži ili van nje gdje god da se nalazite.
Laptopi i računari
Audio knjige koje su kupljene na Google Playu možete slušati pomoću web preglednika na vašem računaru.
Elektronički čitači i ostali uređaji
Da čitate na e-ink uređajima kao što su Kobo e-čitači, morat ćete preuzeti fajl i prenijeti ga na uređaj. Pratite detaljne upute Centra za pomoć da prenesete fajlove na podržane e-čitače.