O-Minimality and Diophantine Geometry

·
· London Mathematical Society Lecture Note Series Libro 421 · Cambridge University Press
eBook
235
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This collection of articles, originating from a short course held at the University of Manchester, explores the ideas behind Pila's proof of the Andre–Oort conjecture for products of modular curves. The basic strategy has three main ingredients: the Pila–Wilkie theorem, bounds on Galois orbits, and functional transcendence results. All of these topics are covered in this volume, making it ideal for researchers wishing to keep up to date with the latest developments in the field. Original papers are combined with background articles in both the number theoretic and model theoretic aspects of the subject. These include Martin Orr's survey of abelian varieties, Christopher Daw's introduction to Shimura varieties, and Jacob Tsimerman's proof via o-minimality of Ax's theorem on the functional case of Schanuel's conjecture.

Acerca del autor

A. J. Wilkie is the Fielden Professor of Pure Mathematics at the University of Manchester. He has twice been joint winner of the Association for Symbolic Logic's Karp Prize. He is a Fellow of the Royal Society, of the American Mathematical Society and a member of Academia Europaea. Wilkie recently served as President of the Association for Symbolic Logic from 2010 to 2013.

G. O. Jones is a Researcher in the School of Mathematics at the University of Manchester.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.