Nonlinear Programming

· Classics in Applied Mathematics Book 10 · SIAM
Ebook
235
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.