On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis

· ·
Infinite Study
Llibre electrònic
11
Pàgines
Apte
No es verifiquen les puntuacions ni les ressenyes Més informació

Sobre aquest llibre

In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting from classical wave equation. The other studies show that the microworld is constituted as a tessellation of primary topological balls. The tessellattice becomes the origin of a submicrospic mechanics in which a quantum system is subdivided to two subsystems: the particle and its inerton cloud, which appears due to the interaction of the moving particle with oncoming cells of the tessellattice. The particle and its inerton cloud periodically change the momentum and hence move like a wave. The new approach allows us to correlate the Klein-Gordon equation with the deformation coat that is formed in the tessellatice around the particle. The submicroscopic approach shows that the source of any type of wave movements including the Klein-Gordon, Schrödinger, and classical wave equations is hidden in the tessellattice and its basic exciations – inertons, carriers of mass and inert properies of matter. We also discuss possible correspondence with Konrad Zuse’s calculating space.

Puntua aquest llibre electrònic

Dona'ns la teva opinió.

Informació de lectura

Telèfons intel·ligents i tauletes
Instal·la l'aplicació Google Play Llibres per a Android i per a iPad i iPhone. Aquesta aplicació se sincronitza automàticament amb el compte i et permet llegir llibres en línia o sense connexió a qualsevol lloc.
Ordinadors portàtils i ordinadors de taula
Pots escoltar els audiollibres que has comprat a Google Play amb el navegador web de l'ordinador.
Lectors de llibres electrònics i altres dispositius
Per llegir en dispositius de tinta electrònica, com ara lectors de llibres electrònics Kobo, hauràs de baixar un fitxer i transferir-lo al dispositiu. Segueix les instruccions detallades del Centre d'ajuda per transferir els fitxers a lectors de llibres electrònics compatibles.