On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis

· ·
Infinite Study
Электрон ном
11
Хуудас
Боломжит
Үнэлгээ болон шүүмжийг баталгаажуулаагүй  Нэмэлт мэдээлэл авах

Энэ электрон номын тухай

In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting from classical wave equation. The other studies show that the microworld is constituted as a tessellation of primary topological balls. The tessellattice becomes the origin of a submicrospic mechanics in which a quantum system is subdivided to two subsystems: the particle and its inerton cloud, which appears due to the interaction of the moving particle with oncoming cells of the tessellattice. The particle and its inerton cloud periodically change the momentum and hence move like a wave. The new approach allows us to correlate the Klein-Gordon equation with the deformation coat that is formed in the tessellatice around the particle. The submicroscopic approach shows that the source of any type of wave movements including the Klein-Gordon, Schrödinger, and classical wave equations is hidden in the tessellattice and its basic exciations – inertons, carriers of mass and inert properies of matter. We also discuss possible correspondence with Konrad Zuse’s calculating space.

Энэ электрон номыг үнэлэх

Санал бодлоо хэлнэ үү.

Унших мэдээлэл

Ухаалаг утас болон таблет
Андройд болон iPad/iPhoneGoogle Ном Унших аппыг суулгана уу. Үүнийг таны бүртгэлд автоматаар синк хийх бөгөөд та хүссэн газраасаа онлайн эсвэл офлайнаар унших боломжтой.
Зөөврийн болон ердийн компьютер
Та компьютерийн веб хөтчөөр Google Play-с авсан аудио номыг сонсох боломжтой.
eReaders болон бусад төхөөрөмжүүд
Kobo Цахим ном уншигч гэх мэт e-ink төхөөрөмжүүд дээр уншихын тулд та файлыг татаад төхөөрөмж рүүгээ дамжуулах шаардлагатай болно. Файлуудаа дэмжигддэг Цахим ном уншигч руу шилжүүлэхийн тулд Тусламжийн төвийн дэлгэрэнгүй зааварчилгааг дагана уу.