On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis

· ·
Infinite Study
Carte electronică
11
Pagini
Eligibilă
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting from classical wave equation. The other studies show that the microworld is constituted as a tessellation of primary topological balls. The tessellattice becomes the origin of a submicrospic mechanics in which a quantum system is subdivided to two subsystems: the particle and its inerton cloud, which appears due to the interaction of the moving particle with oncoming cells of the tessellattice. The particle and its inerton cloud periodically change the momentum and hence move like a wave. The new approach allows us to correlate the Klein-Gordon equation with the deformation coat that is formed in the tessellatice around the particle. The submicroscopic approach shows that the source of any type of wave movements including the Klein-Gordon, Schrödinger, and classical wave equations is hidden in the tessellattice and its basic exciations – inertons, carriers of mass and inert properies of matter. We also discuss possible correspondence with Konrad Zuse’s calculating space.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.