Optimization with Disjunctive Constraints

·
· Lecture Notes in Economics and Mathematical Systems 181. књига · Springer Science & Business Media
E-knjiga
162
Stranica
Ocene i recenzije nisu verifikovane  Saznajte više

O ovoj e-knjizi

The disjunctive cut principle of Balas and Jeroslow, and the related polyhedral annexation principle of Glover, provide new insights into cutting plane theory. This has resulted in its ability to not only subsume many known valid cuts but also improve upon them. Originally a set of notes were written for the purpose of putting together in a common terminology and framework significant results of Glover and others using a geometric approach, referred to in the literature as convexity cuts, and the algebraic approach of Balas and Jeroslow known as Disjunctive cuts. As it turned out subsequently the polyhedral annexation approach of Glover is also closely connected with the basic disjunctive principle of Balas and Jeroslow. In this monograph we have included these results and have also added several published results which seem to be of strong interest to researchers in the area of developing strong cuts for disjunctive programs. In particular, several results due to Balas [4,5,6,7], Glover [18,19] and Jeroslow [23,25,26] have been used in this monograph. The appropriate theorems are given without proof. The notes also include several results yet to be published [32,34,35] obtained under a research contract with the National Science Foundation to investigate solution methods for disjunctive programs. The monograph is self-contained and complete in the sense that it attempts to pool together existing results which the authors viewed as important to future research on optimization using the disjunctive cut approach.

Ocenite ovu e-knjigu

Javite nam svoje mišljenje.

Informacije o čitanju

Pametni telefoni i tableti
Instalirajte aplikaciju Google Play knjige za Android i iPad/iPhone. Automatski se sinhronizuje sa nalogom i omogućava vam da čitate onlajn i oflajn gde god da se nalazite.
Laptopovi i računari
Možete da slušate audio-knjige kupljene na Google Play-u pomoću veb-pregledača na računaru.
E-čitači i drugi uređaji
Da biste čitali na uređajima koje koriste e-mastilo, kao što su Kobo e-čitači, treba da preuzmete fajl i prenesete ga na uređaj. Pratite detaljna uputstva iz centra za pomoć da biste preneli fajlove u podržane e-čitače.