Organometallics for Green Catalysis

·
· Topics in Organometallic Chemistry Cartea 63 · Springer
Carte electronică
301
Pagini
Evaluările și recenziile nu sunt verificate Află mai multe

Despre această carte electronică

This volume presents the latest developments in the use of organometallic catalysis for the formation of bulk chemicals and the production of energy, via green processes including efficient utilization of waste feedstocks from industry. The chemistry of carbon dioxide relating to its hydrogenation into methanol –an eco-friendly energy storage strategy– and its uses as C1 synthon for the formation of important building-blocks for fine chemicals industry are covered. Catalytic hydrogenations of various functional groups and hydrogen transfer reactions including the use of first row metal catalysts are presented as well as the conversion of alcohols to carboxylates via hydrogen transfer with a zero-waste strategy using water. Transformation of renewable or bio-based raw materials is surveyed through alkene metathesis and C–O bond activations and functionalizations. A green aspect for selective formation of C-C, C-O and C-N bonds involves direct regioselective C–H bond activations and functionalizations. These transformations can now be promoted under mild reaction conditions due to the use photoredox catalyts. C–H bond oxidation using visible light leads mainly to the formation of C–O and C–N bonds, whereas cross-coupled C–C bonds can be formed through the radical additions on (hetero) arenes using photoredox assisted mechanism.

Despre autor

Pierre H. Dixneuf obtained his doctorate of Science in Rennes (France) with Prof René Dabard, on ferrocene chemistry, and carried out postdoctoral work as a CNRS researcher on the first steps of N-Heterocyclic Carbene metal complexes with Michael F. Lappert at the University of Brighton, UK. He became a professor at the University of Rennes in 1978. His research interests include both organometallic chemistry toward carbon rich complexes and innovative catalytic processes promoted by ruthenium catalysts. He developed first selective transformations of alkynes and incorporation of CO2, such as vinylcarbamates and carbonates, ruthenium-vinylidenes and –allenylidenes in catalysis, catalytic synthesis of heterocycles, alkene metathesis catalysts from allenylidenes and transformation of plant oils. He is contributing to C–H bond activation/functionalization using ruthenium(II) catalysts especially operating in water. He has co-authored more than 450 publications, co-edited 6 books and his work has been acknowledged with several prizes including: A. v Humboldt prize for Research 1990, Le Bel SFC award and Grignard-Wittig Prize (GDCh) 2000, Institut universitaire de France membership since 2000, academie des sciences IFP prize, Sacconi medal (Italy) in 2006 and Spanish-and Chinese Society of Chemistry award in 2014. He is currently an Emeritus Professor at the University of Rennes, France, where he was university vice-president for research (01-04) and founded the research “Institut de chimie de Rennes” in 2000.
Jean-François Soulé received his MSc in molecular chemistry from the University Paul Sabatier, Toulouse (France). Then, he completed his PhD in 2007 working on the Petasis reaction applied on the synthesis of biological interest molecules under the supervision of the Prof. Jean-Marie Beau, at the Institut de Chimie des Substances Naturelles, Gif-sur- Yvette (France). In 2010, he joined the group of the Prof. Shū Kobayashi at the University of Tokyo (Japan) as a postdoctoral fellow, where he worked on the development of heterogeneous nanoparticles to catalyze organic transformations, namely tandem oxidation using gold nanoparticles for the selective synthesis of amides or imines from simple alcohols and amines, then cross-coupling reactions using nickel nanoparticles. In October 2013, he was appointed as "Chargé de Recherche" CNRS at the University of Rennes in the group of Dr. Henri Doucet. His main interest focuses on the development of sustainable chemistry, notably, transition-metals catalyzed C–H functionalizations.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.