Orthogonal Matrix-valued Polynomials and Applications: Seminar on Operator Theory at the School of Mathematical Sciences, Tel Aviv University

· Operator Theory: Advances and Applications Kitap 34 · Birkhäuser
1,0
1 yorum
E-kitap
214
Sayfa
Puanlar ve yorumlar doğrulanmaz Daha Fazla Bilgi

Bu e-kitap hakkında

This paper is a largely expository account of the theory of p x p matrix polyno mials associated with Hermitian block Toeplitz matrices and some related problems of interpolation and extension. Perhaps the main novelty is the use of reproducing kernel Pontryagin spaces to develop parts of the theory in what hopefully the reader will regard as a reasonably lucid way. The topics under discussion are presented in a series of short sections, the headings of which give a pretty good idea of the overall contents of the paper. The theory is a rich one and the present paper in spite of its length is far from complete. The author hopes to fill in some of the gaps in future publications. The story begins with a given sequence h_n" ... , hn of p x p matrices with h-i = hj for j = 0, ... , n. We let k = O, ... ,n, (1.1) denote the Hermitian block Toeplitz matrix based on ho, ... , hk and shall denote its 1 inverse H k by (k)] k [ r = .. k = O, ... ,n, (1.2) k II} . '-0 ' I- whenever Hk is invertible.

Kullanıcı puanları ve yorumlar

1,0
1 yorum

Bu e-kitaba puan verin

Düşüncelerinizi bizimle paylaşın.

Okuma bilgileri

Akıllı telefonlar ve tabletler
Android ve iPad/iPhone için Google Play Kitaplar uygulamasını yükleyin. Bu uygulama, hesabınızla otomatik olarak senkronize olur ve nerede olursanız olun çevrimiçi veya çevrimdışı olarak okumanıza olanak sağlar.
Dizüstü bilgisayarlar ve masaüstü bilgisayarlar
Bilgisayarınızın web tarayıcısını kullanarak Google Play'de satın alınan sesli kitapları dinleyebilirsiniz.
e-Okuyucular ve diğer cihazlar
Kobo eReader gibi e-mürekkep cihazlarında okumak için dosyayı indirip cihazınıza aktarmanız gerekir. Dosyaları desteklenen e-kitap okuyuculara aktarmak için lütfen ayrıntılı Yardım Merkezi talimatlarını uygulayın.

Seriye devam et

I. Gohberg adlı yazarın diğer kitapları

Benzer e-kitaplar