Analysis on Function Spaces of Musielak-Orlicz Type

·
· CRC Press
Ebook
276
Pages
Eligible
Ratings and reviews aren’t verified  Learn More

About this ebook

Analysis on Function Spaces of Musielak-Orlicz Type provides a state-of-the-art survey on the theory of function spaces of Musielak-Orlicz type. The book also offers readers a step-by-step introduction to the theory of Musielak–Orlicz spaces, and introduces associated function spaces, extending up to the current research on the topic

Musielak-Orlicz spaces came under renewed interest when applications to electrorheological hydrodynamics forced the particular case of the variable exponent Lebesgue spaces on to center stage. Since then, research efforts have typically been oriented towards carrying over the results of classical analysis into the framework of variable exponent function spaces. In recent years it has been suggested that many of the fundamental results in the realm of variable exponent Lebesgue spaces depend only on the intrinsic structure of the Musielak-Orlicz function, thus opening the door for a unified theory which encompasses that of Lebesgue function spaces with variable exponent.

Features

  • Gives a self-contained, concise account of the basic theory, in such a way that even early-stage graduate students will find it useful
  • Contains numerous applications
  • Facilitates the unified treatment of seemingly different theoretical and applied problems
  • Includes a number of open problems in the area

About the author

Osvaldo Mendez is an associate professor at University of Texas at El Paso. His areas of research include Harmonic Analysis, Partial Differential Equations and Theory of Function Spaces. Professor Mendez has authored one book and one edited book.

Jan Lang is a professor of mathematics at The Ohio State University. His areas of interest include the Theory of Integral operators, Approximation Theory, Theory of Function spaces and applications to PDEs. He is the author of two books and one edited book.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.