Pandas in Action

┬╖ Simon and Schuster
рдИ-рдмреБрдХ
440
рдкреЗрдЬ
рдпреЛрдЧреНрдп
рд░реЗрдЯрд┐рдВрдЧ рдФрд░ рд╕рдореАрдХреНрд╖рд╛рдУрдВ рдХреА рдкреБрд╖реНрдЯрд┐ рдирд╣реАрдВ рд╣реБрдИ рд╣реИ ┬ардЬрд╝реНрдпрд╛рджрд╛ рдЬрд╛рдиреЗрдВ

рдЗрд╕ рдИ-рдмреБрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ рдЬрд╛рдирдХрд╛рд░реА

Take the next steps in your data science career! This friendly and hands-on guide shows you how to start mastering Pandas with skills you already know from spreadsheet software.

In Pandas in Action you will learn how to:

Import datasets, identify issues with their data structures, and optimize them for efficiency
Sort, filter, pivot, and draw conclusions from a dataset and its subsets
Identify trends from text-based and time-based data
Organize, group, merge, and join separate datasets
Use a GroupBy object to store multiple DataFrames

Pandas has rapidly become one of Python's most popular data analysis libraries. In Pandas in Action, a friendly and example-rich introduction, author Boris Paskhaver shows you how to master this versatile tool and take the next steps in your data science career. YouтАЩll learn how easy Pandas makes it to efficiently sort, analyze, filter and munge almost any type of data.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Data analysis with Python doesnтАЩt have to be hard. If you can use a spreadsheet, you can learn pandas! While its grid-style layouts may remind you of Excel, pandas is far more flexible and powerful. This Python library quickly performs operations on millions of rows, and it interfaces easily with other tools in the Python data ecosystem. ItтАЩs a perfect way to up your data game.

About the book
Pandas in Action introduces Python-based data analysis using the amazing pandas library. YouтАЩll learn to automate repetitive operations and gain deeper insights into your data that would be impracticalтАФor impossibleтАФin Excel. Each chapter is a self-contained tutorial. Realistic downloadable datasets help you learn from the kind of messy data youтАЩll find in the real world.

What's inside

Organize, group, merge, split, and join datasets
Find trends in text-based and time-based data
Sort, filter, pivot, optimize, and draw conclusions
Apply aggregate operations

About the reader
For readers experienced with spreadsheets and basic Python programming.

About the author
Boris Paskhaver is a software engineer, Agile consultant, and online educator. His programming courses have been taken by 300,000 students across 190 countries.

Table of Contents
PART 1 CORE PANDAS
1 Introducing pandas
2 The Series object
3 Series methods
4 The DataFrame object
5 Filtering a DataFrame
PART 2 APPLIED PANDAS
6 Working with text data
7 MultiIndex DataFrames
8 Reshaping and pivoting
9 The GroupBy object
10 Merging, joining, and concatenating
11 Working with dates and times
12 Imports and exports
13 Configuring pandas
14 Visualization

рд▓реЗрдЦрдХ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ

Boris Paskhaver is a software engineer, Agile consultant, and online educator. His programming courses have been taken by 300,000 students across 190 countries.

рдЗрд╕ рдИ-рдмреБрдХ рдХреЛ рд░реЗрдЯрд┐рдВрдЧ рджреЗрдВ

рд╣рдореЗрдВ рдЕрдкрдиреА рд░рд╛рдп рдмрддрд╛рдПрдВ.

рдкрдарди рдЬрд╛рдирдХрд╛рд░реА

рд╕реНрдорд╛рд░реНрдЯрдлрд╝реЛрди рдФрд░ рдЯреИрдмрд▓реЗрдЯ
Android рдФрд░ iPad/iPhone рдХреЗ рд▓рд┐рдП Google Play рдХрд┐рддрд╛рдмреЗрдВ рдРрдкреНрд▓рд┐рдХреЗрд╢рди рдЗрдВрд╕реНрдЯреЙрд▓ рдХрд░реЗрдВ. рдпрд╣ рдЖрдкрдХреЗ рдЦрд╛рддреЗ рдХреЗ рд╕рд╛рде рдЕрдкрдиреЗ рдЖрдк рд╕рд┐рдВрдХ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдЖрдкрдХреЛ рдХрд╣реАрдВ рднреА рдСрдирд▓рд╛рдЗрди рдпрд╛ рдСрдлрд╝рд▓рд╛рдЗрди рдкрдврд╝рдиреЗ рдХреА рд╕реБрд╡рд┐рдзрд╛ рджреЗрддрд╛ рд╣реИ.
рд▓реИрдкрдЯреЙрдк рдФрд░ рдХрдВрдкреНрдпреВрдЯрд░
рдЖрдк рдЕрдкрдиреЗ рдХрдВрдкреНрдпреВрдЯрд░ рдХреЗ рд╡реЗрдм рдмреНрд░рд╛рдЙрдЬрд╝рд░ рдХрд╛ рдЙрдкрдпреЛрдЧ рдХрд░рдХреЗ Google Play рдкрд░ рдЦрд░реАрджреА рдЧрдИ рдСрдбрд┐рдпреЛ рдХрд┐рддрд╛рдмреЗрдВ рд╕реБрди рд╕рдХрддреЗ рд╣реИрдВ.
eReaders рдФрд░ рдЕрдиреНрдп рдбрд┐рд╡рд╛рдЗрд╕
Kobo рдИ-рд░реАрдбрд░ рдЬреИрд╕реА рдИ-рдЗрдВрдХ рдбрд┐рд╡рд╛рдЗрд╕реЛрдВ рдкрд░ рдХреБрдЫ рдкрдврд╝рдиреЗ рдХреЗ рд▓рд┐рдП, рдЖрдкрдХреЛ рдлрд╝рд╛рдЗрд▓ рдбрд╛рдЙрдирд▓реЛрдб рдХрд░рдХреЗ рдЙрд╕реЗ рдЕрдкрдиреЗ рдбрд┐рд╡рд╛рдЗрд╕ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдирд╛ рд╣реЛрдЧрд╛. рдИ-рд░реАрдбрд░ рдкрд░ рдХрд╛рдо рдХрд░рдиреЗ рд╡рд╛рд▓реА рдлрд╝рд╛рдЗрд▓реЛрдВ рдХреЛ рдИ-рд░реАрдбрд░ рдкрд░ рдЯреНрд░рд╛рдВрд╕рдлрд╝рд░ рдХрд░рдиреЗ рдХреЗ рд▓рд┐рдП, рд╕рд╣рд╛рдпрддрд╛ рдХреЗрдВрджреНрд░ рдХреЗ рдирд┐рд░реНрджреЗрд╢реЛрдВ рдХрд╛ рдкрд╛рд▓рди рдХрд░реЗрдВ.