Pandas in Action

ยท Simon and Schuster
เจˆ-เจ•เจฟเจคเจพเจฌ
440
เจชเฉฐเจจเฉ‡
เจฏเฉ‹เจ—
เจฐเฉ‡เจŸเจฟเฉฐเจ—เจพเจ‚ เจ…เจคเฉ‡ เจธเจฎเฉ€เจ–เจฟเจ†เจตเจพเจ‚ เจฆเฉ€ เจชเฉเจธเจผเจŸเฉ€ เจจเจนเฉ€เจ‚ เจ•เฉ€เจคเฉ€ เจ—เจˆ เจนเฉˆ ย เจนเฉ‹เจฐ เจœเจพเจฃเฉ‹

เจ‡เจธ เจˆ-เจ•เจฟเจคเจพเจฌ เจฌเจพเจฐเฉ‡

Take the next steps in your data science career! This friendly and hands-on guide shows you how to start mastering Pandas with skills you already know from spreadsheet software.

In Pandas in Action you will learn how to:

Import datasets, identify issues with their data structures, and optimize them for efficiency
Sort, filter, pivot, and draw conclusions from a dataset and its subsets
Identify trends from text-based and time-based data
Organize, group, merge, and join separate datasets
Use a GroupBy object to store multiple DataFrames

Pandas has rapidly become one of Python's most popular data analysis libraries. In Pandas in Action, a friendly and example-rich introduction, author Boris Paskhaver shows you how to master this versatile tool and take the next steps in your data science career. Youโ€™ll learn how easy Pandas makes it to efficiently sort, analyze, filter and munge almost any type of data.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Data analysis with Python doesnโ€™t have to be hard. If you can use a spreadsheet, you can learn pandas! While its grid-style layouts may remind you of Excel, pandas is far more flexible and powerful. This Python library quickly performs operations on millions of rows, and it interfaces easily with other tools in the Python data ecosystem. Itโ€™s a perfect way to up your data game.

About the book
Pandas in Action introduces Python-based data analysis using the amazing pandas library. Youโ€™ll learn to automate repetitive operations and gain deeper insights into your data that would be impracticalโ€”or impossibleโ€”in Excel. Each chapter is a self-contained tutorial. Realistic downloadable datasets help you learn from the kind of messy data youโ€™ll find in the real world.

What's inside

Organize, group, merge, split, and join datasets
Find trends in text-based and time-based data
Sort, filter, pivot, optimize, and draw conclusions
Apply aggregate operations

About the reader
For readers experienced with spreadsheets and basic Python programming.

About the author
Boris Paskhaver is a software engineer, Agile consultant, and online educator. His programming courses have been taken by 300,000 students across 190 countries.

Table of Contents
PART 1 CORE PANDAS
1 Introducing pandas
2 The Series object
3 Series methods
4 The DataFrame object
5 Filtering a DataFrame
PART 2 APPLIED PANDAS
6 Working with text data
7 MultiIndex DataFrames
8 Reshaping and pivoting
9 The GroupBy object
10 Merging, joining, and concatenating
11 Working with dates and times
12 Imports and exports
13 Configuring pandas
14 Visualization

เจฒเฉ‡เจ–เจ• เจฌเจพเจฐเฉ‡

Boris Paskhaver is a software engineer, Agile consultant, and online educator. His programming courses have been taken by 300,000 students across 190 countries.

เจ‡เจธ เจˆ-เจ•เจฟเจคเจพเจฌ เจจเฉ‚เฉฐ เจฐเฉ‡เจŸ เจ•เจฐเฉ‹

เจ†เจชเจฃเฉ‡ เจตเจฟเจšเจพเจฐ เจฆเฉฑเจธเฉ‹

เจชเฉœเฉเจนเจจ เจธเฉฐเจฌเฉฐเจงเฉ€ เจœเจพเจฃเจ•เจพเจฐเฉ€

เจธเจฎเจพเจฐเจŸเจซเจผเฉ‹เจจ เจ…เจคเฉ‡ เจŸเฉˆเจฌเจฒเฉˆเฉฑเจŸ
Google Play Books เจเจช เจจเฉ‚เฉฐ Android เจ…เจคเฉ‡ iPad/iPhone เจฒเจˆ เจธเจฅเจพเจชเจค เจ•เจฐเฉ‹เฅค เจ‡เจน เจคเฉเจนเจพเจกเฉ‡ เจ–เจพเจคเฉ‡ เจจเจพเจฒ เจธเจตเฉˆเจšเจฒเจฟเจค เจคเฉŒเจฐ 'เจคเฉ‡ เจธเจฟเฉฐเจ• เจ•เจฐเจฆเฉ€ เจนเฉˆ เจ…เจคเฉ‡ เจคเฉเจนเจพเจจเฉ‚เฉฐ เจ•เจฟเจคเฉ‹เจ‚ เจตเฉ€ เจ†เจจเจฒเจพเจˆเจจ เจœเจพเจ‚ เจ†เจซเจผเจฒเจพเจˆเจจ เจชเฉœเฉเจนเจจ เจฆเจฟเฉฐเจฆเฉ€ เจนเฉˆเฅค
เจฒเฉˆเจชเจŸเจพเจช เจ…เจคเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ
เจคเฉเจธเฉ€เจ‚ เจ†เจชเจฃเฉ‡ เจ•เฉฐเจชเจฟเจŠเจŸเจฐ เจฆเจพ เจตเฉˆเฉฑเจฌ เจฌเฉเจฐเจพเจŠเจœเจผเจฐ เจตเจฐเจคเจฆเฉ‡ เจนเฉ‹เจ Google Play 'เจคเฉ‡ เจ–เจฐเฉ€เจฆเฉ€เจ†เจ‚ เจ—เจˆเจ†เจ‚ เจ†เจกเฉ€เจ“-เจ•เจฟเจคเจพเจฌเจพเจ‚ เจธเฉเจฃ เจธเจ•เจฆเฉ‡ เจนเฉ‹เฅค
eReaders เจ…เจคเฉ‡ เจนเฉ‹เจฐ เจกเฉ€เจตเจพเจˆเจธเจพเจ‚
e-ink เจกเฉ€เจตเจพเจˆเจธเจพเจ‚ 'เจคเฉ‡ เจชเฉœเฉเจนเจจ เจฒเจˆ เจœเจฟเจตเฉ‡เจ‚ Kobo eReaders, เจคเฉเจนเจพเจจเฉ‚เฉฐ เฉžเจพเจˆเจฒ เจกเจพเจŠเจจเจฒเฉ‹เจก เจ•เจฐเจจ เจ…เจคเฉ‡ เจ‡เจธเจจเฉ‚เฉฐ เจ†เจชเจฃเฉ‡ เจกเฉ€เจตเจพเจˆเจธ 'เจคเฉ‡ เจŸเฉเจฐเจพเจ‚เจธเจซเจฐ เจ•เจฐเจจ เจฆเฉ€ เจฒเฉ‹เฉœ เจนเฉ‹เจตเฉ‡เจ—เฉ€เฅค เจธเจฎเจฐเจฅเจฟเจค eReaders 'เจคเฉ‡ เฉžเจพเจˆเจฒเจพเจ‚ เจŸเฉเจฐเจพเจ‚เจธเจซเจฐ เจ•เจฐเจจ เจฒเจˆ เจตเฉ‡เจฐเจตเฉ‡ เจธเจนเจฟเจค เจฎเจฆเจฆ เจ•เฉ‡เจ‚เจฆเจฐ เจนเจฟเจฆเจพเจ‡เจคเจพเจ‚ เจฆเฉ€ เจชเจพเจฒเจฃเจพ เจ•เจฐเฉ‹เฅค