During the last decade, many novel approaches have been considered for dealing with computationally difficult discrete optimization problems. Such approaches include interior point methods, semidefinite programming techniques, and global optimization. More efficient computational algorithms have been developed and larger problem instances of hard discrete problems have been solved. This progress is due in part to these novel approaches, but also to new computing facilities and massive parallelism. This volume contains the papers presented at the workshop on ''Novel Approaches to Hard Discrete Optimization''. The articles cover a spectrum of issues regarding computationally hard discrete problems.