Partial Differential Equations IV: Microlocal Analysis and Hyperbolic Equations

·
· Encyclopaedia of Mathematical Sciences 33. kötet · Springer Science & Business Media
E-könyv
244
Oldalak száma
Az értékelések és vélemények nincsenek ellenőrizve További információ

Információk az e-könyvről

In the first part of this EMS volume Yu.V. Egorov gives an account of microlocal analysis as a tool for investigating partial differential equations. This method has become increasingly important in the theory of Hamiltonian systems. Egorov discusses the evolution of singularities of a partial differential equation and covers topics like integral curves of Hamiltonian systems, pseudodifferential equations and canonical transformations, subelliptic operators and Poisson brackets. The second survey written by V.Ya. Ivrii treats linear hyperbolic equations and systems. The author states necessary and sufficient conditions for C?- and L2 -well-posedness and he studies the analogous problem in the context of Gevrey classes. He also gives the latest results in the theory of mixed problems for hyperbolic operators and a list of unsolved problems. Both parts cover recent research in an important field, which before was scattered in numerous journals. The book will hence be of immense value to graduate students and researchers in partial differential equations and theoretical physics.

E-könyv értékelése

Mondd el a véleményedet.

Olvasási információk

Okostelefonok és táblagépek
Telepítsd a Google Play Könyvek alkalmazást Android- vagy iPad/iPhone eszközre. Az alkalmazás automatikusan szinkronizálódik a fiókoddal, így bárhol olvashatsz online és offline állapotban is.
Laptopok és számítógépek
A Google Playen vásárolt hangoskönyveidet a számítógép böngészőjében is meghallgathatod.
E-olvasók és más eszközök
E-tinta alapú eszközökön (például Kobo e-könyv-olvasón) való olvasáshoz le kell tölteni egy fájlt, és átvinni azt a készülékre. A Súgó részletes utasításait követve lehet átvinni a fájlokat a támogatott e-könyv-olvasókra.