Analysis of the Robin-Dirichlet iterative procedure for solving the Cauchy problem for elliptic equations with extension to unbounded domains

· Linköping Studies in Science and Technology. Licentiate Thesis Book 1 · Linköping University Electronic Press
5.0
1 review
Ebook
10
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In this thesis we study the Cauchy problem for elliptic equations. It arises in many areas of application in science and engineering as a problem of reconstruction of solutions to elliptic equations in a domain from boundary measurements taken on a part of the boundary of this domain. The Cauchy problem for elliptic equations is known to be ill-posed.

We use an iterative regularization method based on alternatively solving a sequence of well-posed mixed boundary value problems for the same elliptic equation. This method, based on iterations between Dirichlet-Neumann and Neumann-Dirichlet mixed boundary value problems was first proposed by Kozlov and Maz’ya [13] for Laplace equation and Lame’ system but not Helmholtz-type equations. As a result different modifications of this original regularization method have been proposed in literature. We consider the Robin-Dirichlet iterative method proposed by Mpinganzima et.al [3] for the Cauchy problem for the Helmholtz equation in bounded domains.

We demonstrate that the Robin-Dirichlet iterative procedure is convergent for second order elliptic equations with variable coefficients provided the parameter in the Robin condition is appropriately chosen. We further investigate the convergence of the Robin-Dirichlet iterative procedure for the Cauchy problem for the Helmholtz equation in a an unbounded domain. We derive and analyse the necessary conditions needed for the convergence of the procedure.

In the numerical experiments, the precise behaviour of the procedure for different values of k2 in the Helmholtz equation is investigated and the results show that the speed of convergence depends on the choice of the Robin parameters, ?0 and ?1. In the unbounded domain case, the numerical experiments demonstrate that the procedure is convergent provided that the domain is truncated appropriately and the Robin parameters, ?0 and ?1 are also chosen appropriately.

Ratings and reviews

5.0
1 review

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.