Permutation Groups and Cartesian Decompositions

·
· London Mathematical Society Lecture Note Series Buku 449 · Cambridge University Press
eBook
338
Halaman
Rating dan ulasan tidak diverifikasi  Pelajari Lebih Lanjut

Tentang eBook ini

Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.

Tentang pengarang

Cheryl E. Praeger is Emeritus Professor at the Centre for the Mathematics of Symmetry and Computation at the University of Western Australia, Perth. She is an Honorary Life Member of the Australian Mathematical Society, and was its first female President. She has authored more than 400 research publications, including five books. Besides holding honorary doctorates awarded by universities in Thailand, Iran, Belgium, Scotland, and Australia, she is also a member of the Order of Australia for her service to mathematics in Australia.

Csaba Schneider is Professor in the Maths Department at the Federal University of Minas Gerais, Brazil. He has held research positions at the University of Western Australia, Perth, the Technical University of Braunschweig, the Hungarian Academy of Sciences, and the University of Lisbon. His mathematical interests include finite group theory, the theory of non-associative algebras, and computational algebra.

Beri rating eBook ini

Sampaikan pendapat Anda.

Informasi bacaan

Smartphone dan tablet
Instal aplikasi Google Play Buku untuk Android dan iPad/iPhone. Aplikasi akan disinkronkan secara otomatis dengan akun Anda dan dapat diakses secara online maupun offline di mana saja.
Laptop dan komputer
Anda dapat mendengarkan buku audio yang dibeli di Google Play menggunakan browser web komputer.
eReader dan perangkat lainnya
Untuk membaca di perangkat e-ink seperti Kobo eReaders, Anda perlu mendownload file dan mentransfernya ke perangkat Anda. Ikuti petunjuk Pusat bantuan yang mendetail untuk mentransfer file ke eReaders yang didukung.