Petri Net Algebra

· ·
· Springer Science & Business Media
Ebook
378
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

In modern society services and support provided by computer-based systems have become ubiquitous and indeed have started to fund amentally alter the way people conduct their business. Moreover, it has become apparent that among the great variety of computer technologies available to potential users a crucial role will be played by concurrent systems. The reason is that many commonly occurring phenomena and computer applications are highly con current : typical examples include control systems, computer networks, digital hardware, business computing, and multimedia systems. Such systems are characterised by ever increasing complexity, which results when large num bers of concurrently active components interact. This has been recognised and addressed within the computing science community. In particular, sev eral form al models of concurrent systems have been proposed, studied, and applied in practice. This book brings together two of the most widely used formalisms for de scribing and analysing concurrent systems: Petri nets and process algebras. On the one hand , process algebras allow one to specify and reason about the design of complex concurrent computing systems by means of algebraic operators corresponding to common programming constructs. Petri nets, on the other hand, provide a graphical representation of such systems and an additional means of verifying their correctness efficiently, as well as a way of expressing properties related to causality and concurrency in system be haviour.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.