Poisson Structures

· ·
· Grundlehren der mathematischen Wissenschaften Book 347 · Springer Science & Business Media
Ebook
464
Pages
Ratings and reviews aren’t verified  Learn More

About this ebook

Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.​

About the author

C. Laurent-Gengoux research focus lies on Poisson geometry, Lie-groups and integrable systems. He is the author of 14 research articles. Furthermore, he is committed to teaching and set up several mathematics projects with local high schools. In 2002 he earned his doctorate in mathematics with a dissertation on " Quelques problèmes analytiques et géométriques sur les algèbres et superalgèbres de champs et superchamps de vecteurs”.

A. Pichereau earned her doctorate in mathematics with a dissertation on “Poisson (co)homology and isolated singularities in low dimensions, with an application in the theory of deformations” under the supervision of P. Vanheacke in 2006. She has since published four journal articles on Poisson structures and contributed to the Proceedings of "Algebraic and Geometric Deformation Spaces”.

P. Vanheacke’s research focus lies on integrable systems, Abelian varieties, Poisson algebra/geometry and deformation theory. In 1991 he earned his doctorate in mathematics with a dissertation on “Explicit techniques for studying two-dimensional integrable systems” and has published numerous research articles since.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.