Polytopes and Graphs

· Cambridge Studies in Advanced Mathematics Libro 211 · Cambridge University Press
eBook
482
Páginas
Las valoraciones y las reseñas no se verifican. Más información

Información sobre este eBook

This book introduces convex polytopes and their graphs, alongside the results and methodologies required to study them. It guides the reader from the basics to current research, presenting many open problems to facilitate the transition. The book includes results not previously found in other books, such as: the edge connectivity and linkedness of graphs of polytopes; the characterisation of their cycle space; the Minkowski decomposition of polytopes from the perspective of geometric graphs; Lei Xue's recent lower bound theorem on the number of faces of polytopes with a small number of vertices; and Gil Kalai's rigidity proof of the lower bound theorem for simplicial polytopes. This accessible introduction covers prerequisites from linear algebra, graph theory, and polytope theory. Each chapter concludes with exercises of varying difficulty, designed to help the reader engage with new concepts. These features make the book ideal for students and researchers new to the field.

Acerca del autor

Guillermo Pineda Villavicencio is an Associate Professor in Computer Science and Mathematics at Deakin University, Australia, and a Fellow of AdvanceHE. He conducts research on graph theory and discrete geometry, the construction and analysis of large networks, and applications of mathematics to health informatics. He is an Accredited Member of the Australian Mathematical Society and served on its Council from 2018 to 2022. He is also a Life Member of the Combinatorial Mathematics Society of Australasia.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.