Polytopes and Graphs

· Cambridge Studies in Advanced Mathematics Livro 211 · Cambridge University Press
Livro eletrónico
482
Páginas
As classificações e as críticas não são validadas  Saiba mais

Acerca deste livro eletrónico

This book introduces convex polytopes and their graphs, alongside the results and methodologies required to study them. It guides the reader from the basics to current research, presenting many open problems to facilitate the transition. The book includes results not previously found in other books, such as: the edge connectivity and linkedness of graphs of polytopes; the characterisation of their cycle space; the Minkowski decomposition of polytopes from the perspective of geometric graphs; Lei Xue's recent lower bound theorem on the number of faces of polytopes with a small number of vertices; and Gil Kalai's rigidity proof of the lower bound theorem for simplicial polytopes. This accessible introduction covers prerequisites from linear algebra, graph theory, and polytope theory. Each chapter concludes with exercises of varying difficulty, designed to help the reader engage with new concepts. These features make the book ideal for students and researchers new to the field.

Acerca do autor

Guillermo Pineda Villavicencio is an Associate Professor in Computer Science and Mathematics at Deakin University, Australia, and a Fellow of AdvanceHE. He conducts research on graph theory and discrete geometry, the construction and analysis of large networks, and applications of mathematics to health informatics. He is an Accredited Member of the Australian Mathematical Society and served on its Council from 2018 to 2022. He is also a Life Member of the Combinatorial Mathematics Society of Australasia.

Classifique este livro eletrónico

Dê-nos a sua opinião.

Informações de leitura

Smartphones e tablets
Instale a app Google Play Livros para Android e iPad/iPhone. A aplicação é sincronizada automaticamente com a sua conta e permite-lhe ler online ou offline, onde quer que esteja.
Portáteis e computadores
Pode ouvir audiolivros comprados no Google Play através do navegador de Internet do seu computador.
eReaders e outros dispositivos
Para ler em dispositivos e-ink, como e-readers Kobo, tem de transferir um ficheiro e movê-lo para o seu dispositivo. Siga as instruções detalhadas do Centro de Ajuda para transferir os ficheiros para os e-readers suportados.