Practical Applications of the Independent Neutrosophic Components and of the Neutrosophic Offset Components

· Infinite Study
E-bog
15
Sider
Kvalificeret
Bedømmelser og anmeldelser verificeres ikke  Få flere oplysninger

Om denne e-bog

The newly introduced theories, proposed as extensions of the fuzzy theory, such as the Neutrosophic, Pythagorean, Spherical, Picture, Cubic theories, and their numerous hybrid forms, are criticized by the authors of [1]. In this paper we respond to their critics with respect to the neutrosophic theories and show that the DST, that they want to replace the A-IFS with, has many flaws.

Their misunderstanding, with respect to the partial and total independence of the neutrosophic components, is that in the framework of the neutrosophic theories we deal with a MultiVariate Truth-Value (truth upon many independent random variables) as in our real-life world, not with a UniVariate Truth-Value (truth upon only one random variable) as they believe.

About the membership degrees outside of the interval [0, 1], which are now in the arXiv and HAL mainstream, it is normal that somebody who over-works (works overtime) to have an over-membership (i.e., membership degree above 1) to be distinguished from those who do not work overtime (whose membership degree is between 0 and 1).

And, similarly, a negative employee (that who does only damages to the company) to have a negative membership (i.e., membership degree below 0) in order to distinguish him from the positive employees (those whose membership degree is above 0). There are elementary practical applications in this paper that allow us to think out of box (in this case the box is the interval [0, 1]).

Bedøm denne e-bog

Fortæl os, hvad du mener.

Oplysninger om læsning

Smartphones og tablets
Installer appen Google Play Bøger til Android og iPad/iPhone. Den synkroniserer automatisk med din konto og giver dig mulighed for at læse online eller offline, uanset hvor du er.
Bærbare og stationære computere
Du kan høre lydbøger, du har købt i Google Play via browseren på din computer.
e-læsere og andre enheder
Hvis du vil læse på e-ink-enheder som f.eks. Kobo-e-læsere, skal du downloade en fil og overføre den til din enhed. Følg den detaljerede vejledning i Hjælp for at overføre filerne til understøttede e-læsere.